If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121=25x^2
We move all terms to the left:
121-(25x^2)=0
a = -25; b = 0; c = +121;
Δ = b2-4ac
Δ = 02-4·(-25)·121
Δ = 12100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12100}=110$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-110}{2*-25}=\frac{-110}{-50} =2+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+110}{2*-25}=\frac{110}{-50} =-2+1/5 $
| 9x-71=6x-8 | | 30=105+x | | 12x+30=10x+40 | | 28=2g | | 6x–3x+4–2x=x+() | | -2.7x^2+30x=5.5 | | 7x-4=29+x | | 5b+34=-2(1–7b) | | 2/3x-9=20 | | 7x-+4=29+x | | 5x+1=-2×-9 | | 30+105=x | | 78=3w-5 | | 2x+x+(x+1)+x+(x+15)=41 | | m+7=3=m-4 | | 5x=2x+-12 | | 0.4s-0.18=9.2 | | -2.7x^2+30x-5.5=12 | | 16.8-a=6a | | 14x+12=12x+22 | | 2x+x+(x+1)+x+(x+15)=40 | | 125+x=30 | | S=6s-17=151 | | 2/3x-6-1/3x-5=1 | | 2x+x+(x+1)+x(x+15)=40 | | 125+30=x | | 9g+2.2=20 | | 4x2-7x=4x | | -9=2/4x-17 | | M+4(2m-4)=-3 | | 2/3n+12=4 | | 5.30/11.1=a/42.7 |